
Debug Review
157
Client

Long-Running Process Errors After Update

01-15

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

Contents

1 Report Confidentiality (Mutually Voided)
Unless mutually voided, information provided in this report is confidential and must not be disclosed to
third parties.

2 Executive Summary

2.1 Review Subject
The client operates a system where the communication between individual components is based on
SOAP messaging over an HTTP transport. After a software update involving custom code and open
source software, the client experienced HTTP request errors in the context of some long-running pro-
cesses in a production environment.

2.2 Recommendations
In the course of the debug review, the root cause was identified as a pthread_t resource leak that
lead to hitting the glibc-internal pthread_t limit which in turn triggered errors during thread-based
asynchronous cURL DNS resolutions. By addressing the resource leak, the issue can be resolved.

3 Timeboxes
The effort required for a code review is inherently variable. To minimize risk, most reviews are limited by
means of a timebox - a fixed time period within which the code review takes place. The client agreed to the
initial timebox during the briefing and can request additional timeboxes thereafter (subject to availability).
Communication and report compilation do not require a timebox, they are covered by timebox fees unless
other agreements exist.

Timeboxes
Date Contact Timebox (h) P(SubstantialInput) Fee Type
01-14 Client 4 Medium Fixed

• Performed initial analysis
• Reviewed cURL code
• Ruled out DNS as root cause
• Identified resource leak as root cause

01-15 Client 4 High Fixed

• Reviewed custom code
• Identified resource leak in custom code
• Recommended resource leak fix
• Recommended proactive prevention based on load test resource monitoring

4 Briefing

4.1 Environment
Environment

Architecture x86_64
Platform Linux
Languages C
Open Source Software RHEL 7.5/7.6 (Kernel 3.10.0), cURL (7.62.0)

2

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

4.2 Context
The HTTP request errors produced the following error message:

HTTP request failed (Error Code: 6)

Based on the fact that cURL is used to communicate via HTTP, the error code must be interpreted using
the cURL documentation and/or source code:

CURLE_COULDNT_RESOLVE_HOST

The custom code uses the cURL easy interface to interact with the library. More detailed error information
is unaviable because CURLOPT_ERRORBUFFER is not used for error handling. Consequently, the review
must be based on the assumption that the root cause is indeed DNS-related.

The error scenario affecting custom code has the following known dependencies:

Custom
Code

cURL
7.62.0

DNS
Server

DNS
Client

RHEL
7.5/7.6

Process
Uptime

Custom Code. Updated, cURL-related code hasn’t changed. The full diff is too large for manual inspec-
tion.

cURL. Unchanged (distributed separately).

DNS Server. Unchanged.

DNS Client. Unchanged. The client does not use nscd to cache DNS requests.

RHEL. Updated from 7.5 to 7.6 (including the Linux Kernel).

Process Uptime. The error has never occurred before and not all long-running processes are affected.
Log analysis with the client revealed that affected long-running processes have a considerably longer up-
time than unaffected processes. Before the update, those long-running processes completed processing
well before the current uptime at the point-in-time of the error. The reason for the longer execution time
is unknown. However, that fact might be related to the root cause.

As of the briefing, the error occurred several times. In all cases, a longer than usual process uptime
could be identified. The assumption is that long-running processes exceeding a specific process uptime
threshold (more or less consistent across current occurrences) are affected by the error. The time of day
varied and seems to be unrelated. It is unknown whether or not the error occurs permanently for a given
process because those processes treat the error as fatal.

Generally speaking, errors triggered by a longer process uptime may be related to resource exhaustion,
particularly if the process uptime is similar for affected processes. Combined with the fact that neither
the cURL-related code nor cURL itself were updated, the DNS-related components haven’t changed
and RHEL updates are unlikely to affect this scenario, resource usage in relation to cURL and call sites
setting CURLE_COULDNT_RESOLVE_HOST must be investigated.

The issue cannot be reproduced in a test environment, so the analysis must be based on the production
environment, must not affect performance significantly, and should not require process restarts.

3

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

5 Analysis

5.1 Action Item: Eliminate DNS Dependency
Risk-Reward Analysis

Risk Minimal (human error resulting in incorrect/missing entries)
Mitigation Potential Minimal (potential, yet unlikely cause can be ruled out)

Facts provided during the briefing do not point to an actual DNS issue. A DNS error occurring after a
faily consistent process uptime is highly unlikely. To rule out the DNS route, I recommend bypassing the
DNS server by adding required hosts to /etc/hosts .

Theoretical scenarios affecting DNS stability:

• Excessive DNS server response times leading to timeouts

• Packet loss leading to timeouts (UDP/TCP)

• Timeouts could cause excessive resource usage / resource exhaustion for multithreaded code
triggering DNS errors (depends on asynchronous request handling)

5.1.1 Results

The change had no effect on the error. Thus, the DNS server can be ruled out. The DNS client would
have to fail in a manner that affects both, DNS- and hosts-based resolution, which is highly unlikely.

5.2 cURL Error Call Sites
To identify a list of possible circumstances leading to CURLE_COULDNT_RESOLVE_HOST besides actual
DNS erros, I inspected the respective cURL error call sites.

cURL creates a new thread for a DNS request to enable asynchronous processing and timeouts.

685 if(init_resolve_thread(conn, hostname, port, &hints)) {
686 *waitp = 1; /* expect asynchronous response */
687 return NULL;
688 }
689
690 failf(data, "getaddrinfo()␣thread␣failed␣to␣start\n");
691 return NULL;

curl-7.62.0/lib/asyn-thread.c

init_resolve_thread essentially calls Curl_thread_create , a thin pthread_create wrap-
per.

62 curl_thread_t Curl_thread_create(unsigned int (*func) (void *), void *arg)
63 {
64 curl_thread_t t = malloc(sizeof(pthread_t));
65 struct curl_actual_call *ac = malloc(sizeof(struct curl_actual_call));
66 if(!(ac && t))
67 goto err;
68
69 ac->func = func;
70 ac->arg = arg;
71
72 if(pthread_create(t, NULL, curl_thread_create_thunk, ac) != 0)
73 goto err;
74
75 return t;
76
77 err:

4

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

78 free(t);
79 free(ac);
80 return curl_thread_t_null;
81 }

curl-7.62.0/lib/curl_threads.c

Besides potential out-of-memory situations, which are highly unlikely, the most likely error scenario is an
error returned by pthread_create . Two return values are particularly relevant:

EAGAIN Insufficient resources to create another thread.

EAGAIN A system-imposed limit on the number of threads was
encountered. There are a number of limits that may
trigger this error: the RLIMIT_NPROC soft resource limit
(set via setrlimit(2)), which limits the number of
processes and threads for a real user ID, was reached; the
kernel's system-wide limit on the number of processes and
threads, /proc/sys/kernel/threads-max, was reached (see
proc(5)); or the maximum number of PIDs,
/proc/sys/kernel/pid_max, was reached (see proc(5)).

EAGAIN indicates that

• RLIMIT_PROC was reached

• /proc/sys/kernel/threads-max was reached

• /proc/sys/kernel/pid_max was reached

• A glibc-internal implementation-specific limit was reached

• An out-of-memory situation was reached

The long-running processes host 100-200 threads at any given time. On the affected systems, RLIMIT_PROC
is 4096, /proc/sys/kernel/threads-max is 131072, /proc/sys/kernel/pid_max is 128040.
Since the last restart, none of the systems have had less then 128 GB of available memory (based on
free).

Reaching glibc-internal limits is not possible under normal circumstances because other limits are more
likely to be reached earlier. One particular situation that makes this likely is a resource leak caused
by creating new threads but not detaching them directly or indirectly. The glibc-internal limit can be
determined empirically with the following sample:

1 #include <stdio.h>
2 #include <pthread.h>
3
4 void *threadmain(void *args)
5 {
6 return NULL;
7 }
8
9 int main(int argc, char **args)

10 {
11 unsigned count = 0;
12 pthread_t thread;
13 while (1) {
14 int ret = pthread_create(&thread, NULL, threadmain, NULL);
15 if (ret != 0) {
16 printf("error␣%d␣count␣%u\n", ret, count);
17 break;
18 }

5

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

19 count++;
20 }
21 return 0;
22 }

maxpthreads.c

The sample returns a limit of 32747 and, in the current glibc implementation, is primarily influenced
by /proc/sys/vm/max_map_count . pthread_create allocates the thread stack via mmap and
installs a guard page at the end of the stack for stack overflow detection using protect . This result in
two memory mappings per thread creation:

7fffeefd1000-7fffef7d1000 rw-p 00000000 00:00 0
7fffef7d1000-7fffef7d2000 ---p 00000000 00:00 0

65530− 32747 ⋅ 2 = 36 remaining mappings, the number of mappings required by the sample for library
initialization. The affected systems use the /proc/sys/vm/max_map_count default. If the long-
running process were to leak one pthread_t per minute, the limit would be reached in 22.75 days,
0.38 days for one per second.

5.3 Action Item: Monitor Thread Counts
Risk-Reward Analysis

Risk Minimal (human error resulting in manual command execution)
Mitigation Potential None (input for further action)

According to the cURL code review, an excessive amount of running threads can trigger the error in
question. To rule this out, the thread counts of affected processes should be monitored. One simple way
to accomplish this if the PID is known:

ls -1 /proc/self/task | tail -n +2 | wc -l

An increasing number of threads could indicate hangs, deadlocks or excessive run times of threads in
any area of the application.

5.3.1 Results

The number of threads ranges between 100 and 200 with no apparent spikes. As a result, the thread
count can be ruled out.

5.4 Action Item: Determine cURL Error Location
Risk-Reward Analysis

Risk Low (process termination resulting from gdb session, human error resulting in
manual command execution)

Mitigation Potential None (input for further action)

Long-running processes should not be restarted or slowed down by introducing significant overhead.
So, the method of identifying the cURL error location must be minimally invasive.

Using GDB and debug symbols, identifying the error location can be attempted. The goal is find out
if pthread_create actually fails and, if it does, whether or not EAGAIN is returned. Based on the
cURL code analysis and assembly, I identified three instruction offsets that should support that goal.
The build is a production build, so branches in the code do not necessary correspond to branches at the
instruction level. Therefore, the addresses of breakpoints were chosen manually to guarantee that the
break location has value.

gdb \
-p <pid> \
-batch \

6

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

-ex "set breakpoint pending on" \
-ex "b curl_easy_init" \
-ex "cont" \
-ex "disable 1" \
-ex "b *(Curl_thread_create+132)" \
-ex "b *(Curl_resolver_getaddrinfo+893)" \
-ex "b *(Curl_resolver_getaddrinfo+967)" \
-ex "cont" \
-ex "generate" \
-ex "print \$eax" \
-ex "info registers" \
-ex "bt" \
-ex "info threads" \
-ex "thread apply all bt" \
-ex "info proc all"

After attaching to the target process, an initial breakpoint is set to an entrypoint of the cURL easy interface
to ensure that the library is loaded and a request was triggered. Then, the initial breakpoint is disabled
and the actual cURL breakpoints are set. A triggered breakpoints generates a dump and writes all
available context information to stdout.

5.4.1 Results

The second breakpoint was triggered and the return value register eax contained 11 - corresponding
to EAGAIN .

Thread 142 "HTTP IO" hit Breakpoint 2, Curl_thread_create (func=func@entry
=0x7f8dc9ed8180 <getaddrinfo_thread>, arg=arg@entry=0x7f8cf2f38a88) at
curl_threads.c:78

$1 = 11

Additionally, info threads returned a thread count within the expected range. info proc all
showed a significant number of memory mappings (in the thousands) that matched the pattern of thread
stack mappings (stack, guard page):

0x7f52a3174000 0x7f52a3974000 0x800000 0x0
0x7f52a3974000 0x7f52a3975000 0x1000 0x0

The large gap between the actual number of threads and allocated stacks confirmed a pthread_t
leak.

The root cause in terms of the actual origin of the resouce leak remains to be identified. The generated
output, info threads , contained a hint that clearly identifies the origin:

173 Thread 0x7f8c5defb700 (LWP 14553) "Worker" 0x00007f8dcd7419f5 in
pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0

255481 Thread 0x7f4b2420e700 (LWP 31237) "Check Processor" 0
x00007f8dcd741da2 in pthread_cond_timedwait@@GLIBC_2.3.2 () from /
lib64/libpthread.so.0

The output revealed a considerable thread ID gap resulting from non-detached threads that were not
running anymore. Based on that indication, Threads of the process seem to be mostly static and long-
running, otherweise the gap would present itself differently. Assuming a high-frequency leak (which is
expected to reach the glibc-internal limit), the last thread named ”Check Processor” seems to be short-
lived and represents a promising resource leak origin candidate.

7

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

5.5 Check Processor
The code creating the ”Check Processor” thread is completely unrelated to the HTTP infrastructure and
was introduced with the update. The purpose of the thread is to run code asynchronously at regular
intervals. The code is as follows:

385 #define CHECK_INTERVAL 5
386 while (!shutdown()) {
387 pthread_t t;
388 int result = pthread_create(&t, NULL, check, NULL);
389 if (result != 0) {
390 vlog("Check␣thread␣creation␣failed");
391 break;
392 }
393 sleep(CHECK_INTERVAL);
394 }

checks/timer.c

Neither the caller, nor the callee (check) release the thread handle by either calling pthread_detach

or pthread_join . With an interval of 5 seconds, thread handles are exhausted after 1.895 days. This
figure matches the time to failure experience by the client. By addressing this resource leak, the subject
of this code review can be fully addressed.

6 Recommendations

6.1 Check Processor Resource Handling
To address the identified resource leak, a non-detached thread, adding pthread_detach would suf-
fice. However, the check processor logic does not account for the fact that the last thread might still be
running when a new thread is about to be started. Usually, it is desirable to delay actions triggered at
regular intervals if the previous action is still running to eliminate a potential overlap that might cause
unexpected behavior and/or a potentially unbounded number of thread creations if those threads share
resources that require mutual exclusion for access. Therefore, my recommendation is to wait for the
previous thread to finish using pthread_join and only then create a new thread. Alternatively, the
thread could be reused.

385 #define CHECK_INTERVAL 5
386 pthread_t t;
387 int started = 0;
388 while (!shutdown()) {
389 int result = 0;
390 if (started) {
391 result = pthread_join(t, NULL);
392 if (result != 0) {
393 vlog("Joining␣check␣thread␣failed");
394 break;
395 }
396 }
397 result = pthread_create(&t, NULL, check, NULL);
398 if (result != 0) {
399 vlog("Check␣thread␣creation␣failed");
400 break;
401 }
402 started = 1;
403 sleep(CHECK_INTERVAL);
404 }

checks/timer.c

8

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

6.2 Load Test Resource Monitoring
To ensure that this or similar issues related to resource usage can be found earlier, resources should be
monitored during load tests. Relevant resources include but are not limited to:

• Process file descriptors

• Process memory mappings

• Process memory usage

• Process thread count

• System memory usage (e.g. to cover shared memory)

• Disk space

For monitoring pthread_t instances, the thread count must be compared with the thread stack count.
Assuming the thread stack size is known, a simple mechanism count be:

#!/bin/bash
pid=$1
threshold=20
t=$(ls -1 /proc/${pid}/task | tail -n +2 | wc -l)
ts=$(pmap ${pid} | grep '8192K rw--- \[anon \]' |wc -l)
diff=$((${t} >= ${ts} ? ${t} - ${ts} : ${ts} - ${t}))
if [${diff} -ge ${threshold}]; then
echo "Potential pthread_t leak" 1>&2

fi

6.3 cURL Error Handling
The error handling of the cURL integration should be improved to maximize the context in case of cURL
errors. Currently, only the cURL error status is taken into account:

HTTP request failed (Error Code: 6)

The underlying code is as follows:

1423 res = curl_easy_perform(curl);
1424 if (res != CURLE_OK) {
1425 fprintf(stderr, "HTTP␣request␣failed␣(Error␣Code:␣%d)\n", res);

io/httprequest.c

Error handling can be improved by enabling CURLOPT_ERRORBUFFER . Also, the error status should be
converted to a text representation using curl_easy_strerror() to ease error interpretation without
having to consult the cURL documentation.

1423 char errbuf[CURL_ERROR_SIZE];
1424 curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, errbuf);
1425 errbuf[0] = '\0';
1426 res = curl_easy_perform(curl);
1427 if (res != CURLE_OK) {
1428 size_t len = strlen(errbuf);
1429 if (len) {
1430 fprintf(stderr, "HTTP␣request␣failed␣(%s:␣%s)\n",
1431 curl_easy_strerror(res),
1432 errbuf);
1433 }
1434 else {
1435 fprintf(stderr, "HTTP␣request␣failed␣(%s)\n",
1436 curl_easy_strerror(res));

9

Debug Review - 157 - Client - Long-Running Process Errors After Update 01-15 23:27:46

1437 }
1438 }

io/httprequest.c

10

	Report Confidentiality (Mutually Voided)
	Executive Summary
	Review Subject
	Recommendations

	Timeboxes
	Briefing
	Environment
	Context

	Analysis
	Action Item: Eliminate DNS Dependency
	Results

	cURL Error Call Sites
	Action Item: Monitor Thread Counts
	Results

	Action Item: Determine cURL Error Location
	Results

	Check Processor

	Recommendations
	Check Processor Resource Handling
	Load Test Resource Monitoring
	cURL Error Handling

